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EXECUTIVE SUMMARY 
 
Physical I/O patterns generated by Oracle Database workloads are well understood. The predictable nature of these I/O characteristics 
have historically enabled platform vendors to implement widely varying I/O acceleration technologies including prefetching, coalescing 
transfers, tiering, caching and even I/O elimination. However, the key presumption central to all of these acceleration technologies is that 
there is an identifiable active data set. While it is true that Oracle Database workloads generally settle on an active data set, the active 
data set for a workload is seldom static—it tends to move based on easily understood factors such as data aging or business workflow 
(e.g., “month-end processing”) and even the data source itself. Identifying the current active data set and keeping up with movement of 
the active data set is complex and time consuming due to variability in workloads, workload types, and number of workloads. Storage 
administrators constantly chase the performance hotspots caused by the active dataset. 

 

All-Flash Arrays (AFAs) based on flash media can completely eliminate the need to identify the active dataset because of the ability of flash 
to service any part of a larger data set equally. But not all AFAs are created equal. 

 

Even though numerous AFAs have come to market, obtaining the best performance required by databases is challenging. The challenge 
isn’t just limited to performance. Modern storage arrays offer a wide variety of features such as deduplication, snapshots, clones, thin 
provisioning, and replication. These features are built on top of the underlying disk management engine, and are based on the same rules 
and limitations favoring sequential I/O. Simply substituting flash for hard drives won’t break these features, but neither will it enhance 
them. 

 

EMC has developed a new class of enterprise data storage system, XtremIO flash array, which is based entirely on flash media. XtremIO’s 
approach was not simply to substitute flash in an existing storage controller design or software stack, but rather to engineer an entirely 
new array from the ground-up to unlock flash’s full performance potential and deliver array-based capabilities that are unprecidented in 
the context of current storage systems. 

 

This paper will help the reader understand Oracle Database performance bottlenecks and how XtremIO AFAs can help address such 
bottlenecks with its unique capability to deal with constant variance in the IO profile and load levels. We demonstrate that it takes a highly 
flash-optimized architecture to ensure the best Oracle Database user experience. 
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INTRODUCTION 
 

One important trend in the IT industry is the move into the era of Low Latency Commercial Computing. For many years, technology 
improvements in CPU have greatly outpaced improvements in storage. This trend is not tenable in light of IT deployment models such as 
consolidation and virtualization. IT can no longer suffer high-latency, unpredictable storage performance. To that end, the storage market 
is quickly becoming saturated with All-Flash-Array (AFA) technology offerings. However, AFAs are not universally equal. 

 
This document offers insights and case studies focused on OLTP performance characterization of EMC XtremIO. Readers will gain an 
understanding of the principles of Oracle Databases that impact overall application performance. It also discusses why AFA technology is 
important in solving Oracle performance issues. It will also touch upon different architectural approaches and trade-offs for AFAs that affect 
behavior under different IO patterns. Finally, a case study with test results showing how XtremIO delivers consistent Oracle Database 
performance under all conditions is presented. 

 

 

CHASING ACTIVE DATA SET 
 

Physical I/O patterns generated by Oracle Database workloads are well understood because they haven’t changed for decades. The 
understandable, predictable nature of these I/O characteristics have historically enabled platform vendors to implement widely varying 
I/O acceleration technologies including prefetching, coalescing transfers, tiering, caching and even I/O elimination. However, to a certain 
extent, the key presumption central to all of these acceleration technologies is that there is an active data set and that it is identifiable. 

 

It’s true, Oracle Database workloads generally settle on an active data set. However, the active data set for a workload is seldom static— 
it tends to move based on easily understood factors such as data aging or business workflow (e.g. “month-end processing”). Identifying 
the current active data set—or even responding to movement of the active data set—is also a well-understood science and that is why 
historical platform acceleration approaches could be quite effective. However, would these techniques work in the era of consolidation? 

 

 

THE BIRTH OF THE ALL-FLASH ARRAY 
 

Modern Oracle Database deployments seldom dedicate a single storage device to a single database. The most common approach is to 
consolidate many database instances into as few, powerful servers as possible and use shared storage. There simply isn’t enough 
physical space in IT datacenters to allow for any sort of one-to-one provisioning. This is not bad by definition, but the paradigm presents 
challenges—particularly when dealing with storage performance needs. This is nothing new. IT professionals have been identifying 
storage performance problems on shared storage and taking action for years. We all know the drill: identify the “hot” data (a.k.a. active 
data set) and take action. 

 

It’s simple to identify the active data set of a single Oracle Database, but what about 10 databases? What about 100 or 1000 databases? 
The answer is quite simple—there is no single active data set! For most Oracle Database shops, there are many active data sets—or 
aggregate group active data sets. 

 

To ensure predictable low-latency, high-bandwidth storage for Oracle there is but one option—the AFA. With AFA technology one can 
realistically consider the entirety of their storage optimal for all data—not just the active data set of a bygone era. 

 

But are all of the AFA products on the market created equal? No, they are not. 
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ALL-FLASH ARRAYS ARE NOT CREATED EQUAL 
 

Enterprise storage arrays are highly sophisticated systems that have evolved over decades to provide levels of performance, reliability, 
and functionality unavailable in the underlying hard disk drives. A significant aspect of the engineering work to make this possible is 
designing the array hardware and software stack to extract the most capability out of hard drives. 

 

All-Flash Arrays (AFAs) based on flash media, not bound by hard disk drive limitations, have come to market. However, obtaining 
superior performance from an SSD, much less in an enterprise storage array filled with them, is challenging. Existing storage arrays 
designed to ‘sequentialize’ workloads are simply optimized along a dimension that is no longer relevant because there is no “seek 
penalty” on NAND flash. The array controller designs must be entirely rethought to exploit the random access flash media, or they simply 
become the bottleneck. The challenge isn’t just limited to performance. Modern storage arrays offer a wide variety of features such as 
deduplication, snapshots, clones, thin provisioning, and replication. These features are built on top of the underlying disk management 
engine, and are based on the same rules and limitations favoring sequential I/O. Simply substituting flash for hard drives won’t break 
these features, but neither will it enhance them. 

 

XtremIO has developed a new class of enterprise data storage system based entirely on flash media. XtremIO’s approach was not simply 
to substitute flash in an existing storage controller design or software stack, but rather to engineer an entirely new array from the 
ground-up. This allows XtremIO to unlock flash’s full performance potential and deliver array-based capabilities that are unprecidented in 
the context of current storage systems. 

 

AFA vendors have adopted different architectures—scale up (scaling of performance and capacity by adding by adding disk shelves) and 
scale out (linear scaling of performance and capacity together using a unit containing both controllers and disk shelves). Different data 
protection schemes have been adopted—most re-used RAID systems developed for HDDs, while very few have created flash-optimized 
data protection schemes. These architectural choices impact not only data protection and effective capacity, but also sustainability of 
service times (latency) and throughput. 
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ORACLE DATABASE IN LOW LATENCY COMPUTING 
TODAY, MORE THAN EVER, APPLICATION USERS EXPECT INFORMATION IMMEDIATELY 
 
 

immediate 

[ih-mee-dee-it] adjective 

1. occurring or accomplished without delay; instant: an immediate reply 
 

Indeed, application users expect information immediately and for that reason, time is all that matters from an application 
performance perspective. Skilled Oracle practitioners know this as the Oracle Database Performance Method based on Time Model 
statistics—or Time Model Method for brevity. 

 

 
TIME MODEL 
 

Mastering Oracle Database performance requires an understanding of the fundamentals of the Time Model Method: 

 
• DB Time: The wall-clock time of database requests by active sessions attached to an Oracle Database instance (e.g., a 

PL/SQL package execution or simple SQL statements) is known as DB Time. DB Time consists of two time domains: 

o DB CPU: The wall-clock time in which Oracle Database processes are in a running state (from the operating 
system point of view) on behalf of active sessions. 

o Wait Time: The wall-clock time Oracle Database processes are not in a running state (from the operating system 
point of view) in spite of active sessions. An example of Wait Time is a session waiting for a random physical read 
from a data file. 

• Idle Time: The wall-clock time in which Oracle Database has been booted up, but is not processing requests for active 
sessions is known as Idle Time. 

• Elapsed Time: This is any period of wall clock time covered by a sampling of Oracle Database internal performance metrics 
(e.g., via Active Workload Repository scripts). 

 
The Oracle Database is multiprocessing software—and runs on multiprocessor systems—therefore one should expect DB Time to be 
much larger than Elapsed Time on an active Oracle Database. For example, consider an Oracle Database instance with 400 active 
sessions that have each waited for 1 second for the results from a SQL statement. Such a situation would accumulate 400 seconds of 
DB Time to account for. To further the example, consider the same 400 seconds of DB Time on a server with 16 processors. In such 
a situation, one could expect to see DB Time broken into as much as 16 seconds of DB CPU and roughly 384 seconds of Wait Time 
per second. 

 

Understanding of Time Model is key to optimizing application performance. 

 
 
WAIT EVENT ANALYSIS TO CHOSE THE RIGHT STORAGE 
 

Generally speaking, the goal of Time Model tuning is to identify and eliminate Wait Time. Once a workload consists purely of DB CPU 
there are no acceleration options other than provisioning more processor bandwidth or changing the work Oracle Database is being 
tasked with (e.g., SQL tuning, reducing calls to the database via application tier caching, etc.) 
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The Time Model Method can also be used to identify Oracle Database workloads that are good candidates for acceleration through 
the use of faster storage—such as EMC XtremIO. This can be done with Automatic Workload Repository (AWR) reporting or even 
Oracle Enterprise Manager (a.k.a. EM). For example, consider the graph in Figure 1, which shows an EM timeline that categorizes 
Time Model waits by active sessions into classes ranging from User I/O to Cluster class waits. The example shows the EM webpage 
has highlighted User I/O class waits in yellow. User I/O class waits are suffered by active sessions reading or writing data while 
executing SQL statements. 

 

The workload depicted in Figure 1 shows a clear-cut case for faster storage since I/O waits ranked as the highest class of waits. 

 
 

 
Figure 1: IO Intensive Oracle Database Workload 

 
 

Details about specific types of User I/O waits can be seen in Automatic Workload Repository (AWR) reports. For instance, Figure 2 
shows an example of a workload prime for acceleration from low-latency storage since roughly 41% (=14.68 + 13 + 8.33 + 4.96) of 
DB Time is languishing on physical I/O (User I/O class) with service times ranging from 4 to 17 milliseconds. 

 

 
Figure 2: Time Model Top 5 Timed Waits for an I/O Bound System 
 
The Oracle Time Model Method also plays a crucial role in helping administrators determine when storage is not a significant 
performance problem. For example, Figure 3 shows an AWR snippet of an application that is both CPU-bound and suffering internal 
Oracle Database contention1. 

 

The workload profile shown in Figure 3 cannot be improved by accelerating storage. 

 

                                   
1 Concurrency Class waits are internal database server waits. Note, however, that CPU saturation is generally the root cause of these waits. 
http://docs.oracle.com/cd/E11882_01/server.112/e40402/waitevents001.htm#BGGHJGII. 
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Figure 3: Time Model Top 5 Timed Waits for a CPU Bound System 
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AN OPTIMAL TIME MODEL FOR ORACLE 
THE EMC XTREMIO CASE STUDY 
 
 
OLTP SERVICE TIMES CHARACTERIZATION ON EMC XTREMIO 
 

With EMC XtremIO, it is very easy to provide an example of what Time Model data should look like in the era of low-latency commercial 
computing. To illustrate the point, EMC engineers conducted a test with the following characteristics: 

 

• Oracle Database 11g Release 2 was installed on a 2-socket Intel Xeon E5-2600 server2 running Oracle Linux 6. 

• The server was connected to a single X-Brick EMC XtremIO AFA via 4 paths of 8Gbps Fibre Channel. 

• Four LUNs were provisioned from the array. 

• The host was configured with Device Mapper in accordance with My Oracle Support Doc ID: 1594584.1. The LUNs were then 
added as disks in an Automatic Storage Management (ASM) disk group created with external redundancy. 

• As pre-conditioning exercise for the array, a 5 terabyte tablespace—based on 8KB blocks—was created. 

• Immediately after the tablespace was initialized, 1 terabyte of application data was loaded. No form of Oracle compression was 
used. 

• After loading the data a 1-hour test of an OLTP-style SQL workload (SLOB3) was initiated with a SQL mix of 75% SELECT, 25% 
UPDATE. There were 96 dedicated connections to the instance each submitting SQL requests to the database server with zero 
think-time. 

 
The primary goal of this testing was to increase physical I/O rates only to the point at which average service times remained at or below 
1 millisecond as measured by the Oracle Database wait interface. The simplest way to show the runtime characteristics of the 1-hour test 
is to examine sections of the text AWR report. Figure 4 shows the AWR report. 

 

 
Figure 4: AWR Load Profile Section - Single X-Brick XtremIO Array 

                                   
2 This particular lab system had Intel Simultaneous Multithreading (SMT) disabled. AWR reports will show 2 sockets, 16 cores and 16 CPUs. 
3 For the sake of openness the widely popular and easily obtained Silly Little Oracle Benchmark (SLOB) kit was used to test the array. For more information on 
SLOB please refer to https://community.emc.com/docs/DOC-33564. 
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The following observations can be made about runtime characteristics: 

 

• The AWR sample period was 60.12 minutes (3,607 seconds). The Oracle Database block buffer cache was 1024MB (sufficient to 
cache only .09% of the active data set which was 1 terabyte) 

• Time Model Method characteristics were as follows: 

o DB Time. 95.9 seconds which maps directly to the 96 zero think-time sessions 

o DB CPU. 9.3 seconds. The host had 16 CPUs, therefore the host processor utilization level was 58% busy (9.3/16) 

• 29,014 SQL Executions issued to the database instance per second 

• The database instance physical I/O characteristics were as follows:  

o Physical Reads. 83,114 physical read requests (on average), per second, to the EMC XtremIO array  

o Physical Writes. 15,754 physical write requests (on average), per second, to the EMC XtremIO array 

• The transaction logging rate was 20.8 MiB (21,834,010 bytes) per second—or roughly 73 GB/h 

 

Now that the runtime characteristics of the test are understood, let us look at Figure 5, which shows Top 5 Timed Wait Events (some 
components of the Time Model) section of the AWR report. 

 

 
Figure 5: AWR Timed Wait Events - Single X-Brick XtremIO Array 

 

In addition to showing the ranking of crucial wait events, Figure 5 also shows wall-clock average wait times as well. Here are some 
important observations: 

 

This OLTP-style workload encountered User I/O class waits accounting for 92.7% of all wait time—typical of an OLTP workload profile. It is 
very clear that this kind of workload simply needs faster storage. 

 
However, what if the storage is already very fast? If storage is already very fast, and service level agreements are being met, one can 
simply claim success and move along to the next IT performance challenge they are facing. Of course the definition of “very fast” is 
relative, but in terms of contemporary flash storage, millisecond latency is generally considered the gold standard. In this case, as Figure 
5 shows, there were 299,784,368 total waits for db file sequential read4 which cost the active sessions 320,702 seconds of wait time. This 
works out to 1.07 millisecond average wait time for the top wait event (320,702/299,784,368). 

 
Averages are not a sufficient metric of suitable low-latency storage for Oracle Database. One must also examine the AWR histogram data 
to see if there are significant outliers. Figure 6 shows that latency for both single-block random and multi-block noncontiguous reads fell 

                                   
4 Routinely misunderstood, the db file sequential read event accounts for single block random I/O calls to the operating system. The moniker includes the 
word sequential because these I/O calls are made one after the other—sequentially. They are, in fact, blocking single-block reads from random file 
offsets. 
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below 1 millisecond 65% and 60% of the time respectively—and over 90% of all such I/O completed in less than 2 milliseconds. These are 
key performance indicators because these I/O events fall within the transaction scope. 
 

 
Figure 6: Wait Event Histogram - Single X-Brick XtremIO Array 
 
Transaction log (aka redo logging) writes are also a key performance indicator since these I/O operations are, of course, scoped within 
transactions. Figure 6 shows that more than 94% of all redo log writes completed in less than 2 milliseconds and only 0.3% of all of log 
writes took longer than 4 milliseconds. 

 
 
SCALING ORACLE OLTP WORKLOADS WITH XTREMIO ARRAYS 
 
The previous section covers typical EMC XtremIO performance characteristics with an Oracle OLTP-style I/O profile against a single X-
Brick XtremIO array (the smallest system available). The amount of test data was 1 TB and the workload harness (SLOB) forces 
completely random access across all of the data loaded into the tablespaces. The I/O rate shown for the 75:25 read/write workload was 
98,868 IOPS with very favorable service times measured by the Oracle wait interface. What would happen if the workload scaled up to 
achieve more I/O requests? In this section, we will examine how service levels can be kept within tolerable levels by scaling out the X-
Brick cluster. 

 

Current AFA technology offers various forms of scalability. Some manufacturers offer scaling from a single storage processor to two. EMC 
XtremIO, on the other hand, supports scaling from a single X-Brick to four X-Bricks at publication time of this document. The most 
important aspect of XtremIO scalability is the fact that it is active-active multi-controller scaling which means hosts with multipath I/O 
technology are able to issue I/O requests to the array in a manner that balances the requests across all of the controllers on all X-Bricks 
in the array. For example, an Oracle Database that fits in the usable capacity of a single X-Brick array can also be stored in an array with 
two X-Bricks for double the IOPS and double the I/O bandwidth. 

 

 

SCALE FROM SINGLE X-BRICK TO DUAL X-BRICK ARRAY 
 

To illustrate the scalable nature of XtremIO, EMC engineers created an Oracle Database 11g Real Application Clusters database on a two-
node cluster attached to an XtremIO array with two X-Bricks. Next, the same schema and data discussed in the single X-Brick section 
above were loaded into the XtremIO array. Once the data was loaded, scalability was assessed via the SLOB workload test kit. 

 

Figure 7 shows that the testing of the two X-Brick array was based on the same 60-minute test duration used in the single X-Brick array 
testing described in the previous section. Further, the Oracle Database block buffer cache was also configured with the same capacity on 
both Real Application Clusters nodes as the single X-Brick testing. The schemas, queries and data volumes were in fact identical between 
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the one X-Brick and two X-Brick testing. 

 

 
Figure 7: XtremIO Two-Node Oracle RAC Testing 
 

Before we measure the effectiveness of the scaling, we need to make sure the workloads are similar in terms of IO behavior. We will use 
the ratio between SQL executions to database block changes and instance I/O events. 

 

With an OLTP-style workload, like SLOB, physical accesses to blocks of disk are prefaced by an attempt to access the block in the SGA 
block buffer cache. These buffer accesses are called logical I/O. Workloads that exhibit a significant variance in logical I/O are not 
considered comparable. 

 

Another important metric in comparing test results is the ratio of SQL executions to block changes. Since the SQL blend in both tests was 
75% SELECT and 25% UPDATE, the ratio of SQL executions to block changes must show near parity. 

 

Figure 8 validates that the two test configurations sustained nearly identical processing as per the key indicators below:  

 

• The ratio of SQL executions to logical I/O was within 4% 

• The ratio between SQL executions and physical I/O was within 2% 

• The ratio between SQL executions and database block changes was within 1% 
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Figure 8: Validating Oracle Database OLTP Results - Single vs Dual X-Brick XtremIO Array 
 

 
CONSISTENT AVERAGE WAIT TIMES 
 

With the assurance of workload similarity in mind, we turn to the Time Model data from the 2 X-Brick array testing. Figure 9 shows that 
the AWR top wait event was single-block random read (User I/O class). The data shows how the db file sequential read wait events were 
satisfied, on average, in 961us (549,803.06 seconds /571,931,278 waits). Further, we see that both of the Real Application Clusters 
nodes experienced the same I/O latency because the maximum of averages on any host was 960us—as reported under the Summary 
Avg Wait Time heading. Those are, of course, random reads. What about writes?  

 

One must always bear in mind that the critical write operations in an OLTP workload are transaction log (a.k.a. redo) writes. To that end, 
Figure 9 shows that active sessions suffered log file parallel write wait events at the rate of roughly 1,400 per second (5,156,057/3600), 
yet this aggregate wait time ranked fifth in the list of waits events. This is because the service times for the redo log flush operations 
languished only 1.1ms on average. Given the sustained redo rate at this level (discussed more in the next section), 1.1ms waits for redo 
log flushing is very respectable.  
 

 
Figure 9: AWR Top Timed Events - XtremIO Dual X-Brick Array 
Average wait time for db file sequential read wait events was 961µs. Further, both of the Real Application Clusters nodes experienced the 

5.80	  

3.41	  

1.53	  

5.58	  

3.33	  

1.52	  

0.00	  
1.00	  
2.00	  
3.00	  
4.00	  
5.00	  
6.00	  
7.00	  

Logical	  I/O	  per	  SQL	  
Execu>on	  

Physical	  I/O	  per	  SQL	  
Execu>on	  

Block	  Changes	  per	  SQL	  
Execu>on	  

Workload	  Comparison	  
OLTP	  I/O	  Metrics	  

1	  X-‐Brick	  

2-‐Xbrick	  



 15 

same I/O latency because the maximum of averages on any host was 960us—as reported under the Summary Avg Wait Time heading. 

 
Transaction Logs (redo logs) are critical part of any OLTP workloads. It is clear from Figure 9 that although there were 1,400 per second 
log file parallel write wait events for redo log flushing, average service times were only 1.1 milliseconds. Given the sustained redo rate at 
this level (discussed more in the next section), the service times of 1.1 milliseconds waits for redo log flushing is very respectable. 

 
 
SUSTAINED IO RATES (THROUGHPUT) 
 

Next, we turn to the I/O rates section the AWR report. Since this was a test with 2 X-Bricks, we expect to see double the rates 
(throughput) measured in the single X-Brick testing (see Figure 4). Figure 10 shows: 

 

• Physical reads were 158,740 per second 

• Physical writes were 30,788 per second 

• Redo logging was 41.4 MiB 

 

 
Figure 10: Oracle Database OLTP - XtremIO Dual X-Brick Array 
 
Figure 11 offers a side-by-side comparison of the single and dual X-Brick XtremIO testing where we see: 

 
• Random reads scaled at 96% of linear scalability 

• Writes scaled at 98% of linear scalability 

• Redo logging and SQL executions scaled linearly 
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Figure 11: Comparison of Key Oracle Database OLTP Metrics - Linear Scalability of XtremIO Array 
 

 
PREDICTABLE SERVICE TIMES ON XTREMIO 
 
Service times with XtremIO do not increase unpredictably as I/O queues grow deeper. 

 

To illustrate the predictability of service times as I/O rates increase, EMC engineers scaled up the SLOB testing against a dual X-Brick 
XtremIO array. The zero-think-time runs were gradually increased to 368 (184 dedicated connections per RAC host) from 192 (from 
previous tests). Note, each data point in Figure 12 represents a 60-minute test of zero think-time SQL processing with a SQL blend of 75% 
SELECT with 25% UPDATE. 

 

 
Figure 12: Predictable Service Times Measured with Oracle Database OLTP - XtremIO Dual X-Brick Array 
Figure 12 shows that IOPS increased from 189,525 to 221,906—an increase of 17% without any sharp spike in average service times 
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when number of sessions were increased from 192 to 368. Even at the 368 sessions, service times were still averaging 1.36 milliseconds. 

 

It is clear from Figure 12 that XtremIO keeps the service times within predictable range—unlike logarithmic increases seen with other flash 
array products—even when the IOPS serviced increases 2X. 

 

Please refer to Appendix A for more information on how the data presented in Figure 12 was collected. 
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ARCHITECTURES IMPACT SUSTAINABILITY OF SERVICE TIMES  
 

AFA vendors have adopted different architectures—scale up (two controllers and many disk shelves) and scale out (linear scaling of 
performance and capacity). Different data protection schemes have also been used—most of them have adopted RAID systems that were 
developed for HDDs and very few have created data protection from the ground up. The architectural choices impact not only data 
protection and effective capacity but also the sustainability of service times (latency) and throughput. The architectural weaknesses are 
usually exposed by sustained heavy workloads—exactly the kind of workloads for which flash arrays are typically deployed. For example, 
the design approach for handling intrinsic NAND Flash garbage collection and write amplification for a particular array might favor 
workloads that are either entirely write-centric or read-centric but exhibit pathological behavior with a mixed I/O profile. Design choices 
also dictate how arrays perform when the array capacity is written close to full (space exhaustion). 

 

 

ORACLE DATABASE TABLESPACES ARE GENERALLY PRE-ALLOCATED 

 

Oracle Database stores tables and indexes in tablespaces that are comprised of one or more datafiles. Datafiles are initialized when added 
to the database. Database Administrators (DBA) must chose when space is added to tablespaces—pay now or pay later. The DBA can, for 
instance, chose to add large datafiles to the database before application data is loaded or opt instead to add auto-extending files to the 
database. The first option takes some processing time while the space is overwritten with large sequential writes. On the other hand, the 
latter approach taxes active sessions by triggering auto-extend operations when the database needs more space. An auto-extend operation 
consists of initializing each block and writing them to the extending datafile, which can impact application SLAs. For this reason, DBAs 
generally size the application and pre-allocate space. Often times, the DBAs will also leave the tablespace in auto-extend mode just to 
ensure any miscalculation in pre-sizing doesn’t result in application failure. 

 

AFAs are not equally capable of handling pre-allocation, especially if it causes space exhaustion. So what happens if a DBA decides to 
create tablespaces that fill up the user-capacity of an AFA? It depends. 

 

In the next sections, we will investigate how XtremIO and a competing product behave under space exhaustion. EMC engineers did a side-
by-side comparison to find overall array behavior over an 8-hour time period and also looked for any trends on a much longer period. 

 
 
TEST DESCRIPTION 
 

Each array was attached with identical storage networking connectivity to servers configured with two Intel E5-2600 processors. Each 
server ran Oracle Linux with the Unbreakable Enterprise Kernel. Oracle Database 11g Release 2 was installed and configured to use 
Automatic Storage Management on both servers as well. 

 

The following sequence of tasks was performed on both configurations: 

1. Baseline preparation  

a. A tablespace of 1100MB was created in which to load the OLTP-style test data. Once again, SLOB was used for this testing. 

b. The tablespace was then loaded with 1TB of SLOB test data using the single-schema feature. 

c. Baseline tests were conducted at varying read:write ratios to ensure the health of the 1TB scale SLOB schemas. 
  

2. Create large Oracle Tablespace sized to array’s usable capacity  

a. EMC engineers created a large tablespace in order to drive space utilization beyond roughly ninety percent of the 
formatted user-addressable capacity of each array. The arrays offered vastly different gross capacities, so the size of this 
tablespace was relative to the user-addressable space supported by the array. 

i. The tablespace created in the competitor’s array was 12TB. 

ii. The tablespace created in the single X-Brick XtremIO array was a little over 4TB. 
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3. Long-Duration OLTP-Style Testing 

a. An 8-hour SLOB test with 25% SQL Update and 96 sessions was started, targeting the 1TB data set loaded in step 1. 

 

 

8-HOUR WAIT EVENTS ANALYSIS 
 

Figure 13 and Figure 14 compare the Top 5 wait events between the competitor’s AFA and XtremIO flash array for the 8-hour run. 
 

 
Figure 13: 8-Hour OLTP Testing Top 5 Timed Events - Competitor's array 
 

 
Figure 14: 8-Hour OLTP Testing Top 5 Timed Events - XtremIO Single X-Brick Array 
 

Key observations from Figure 13 and Figure 14: 

 

1. Both the competitor’s and XtremIO array showed a workload with healthy wait profiles for 25% SQL Update OLTP-style testing 
since random single block reads ranked at the top. 

2. Single X-Brick serviced 2.5 billion 8KB random read IOs at average latency of 1.04ms whereas the competitor’s array needed 
1.39ms. 

3. XtremIO serviced 33% more random reads during the 8-hour test as a result of 33% faster average service times. 
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8-HOUR THROUGHPUT ANALYSIS 
 
Generally, averages over longer duration tend to “smooth over” the pathologies. Given that the testing was conducted for an 8-hour 
period, it was decided to scrutinize the results with vmstat(8) data to unearth any trends in the result. 

 

The SLOB test kit produces vmstat data based on 3-second interval samples, which amounted to 9,600 3-second samples. Figure 15 
shows the resulting graph which shows throughput (MB/s) sustained by the single X-Brick XtremIO array compared to the competitor’s 
array. 

 

 
Figure 15: 8-Hour OLTP Workload Comparison - XtremIO Single X-Brick array vs. Competitor's Array 
 

Figure 15 reveals the following trends: 

 

1. The competitor’s array was roughly 17% faster than the single X-Brick XtremIO array for about the first 2 hours of the test cycle. 

2. The competitor’s array entered into a pathological state where the throughput started dropping at roughly two-hours into the test 
and settled to about 50% drop in few hours. It did not return to the throughput levels demonstrated at the beginning. 

3. The XtremIO array sustained the workload with predictable performance from beginning to end. 

 

It was concluded that the competitor's array was experiencing larger latency around 2-hours into the test due to garbage collection of 
unused blocks and hence was directly impacting the throughput of the Oracle OLTP workload. Latency in physical I/O directly limits the 
amount of concurrent I/O and, thus, storage throughput as depicted in Figure 15 suffers. In other words, I/O service times are the only 
performance trait that can affect throughput with this workload. 

 

Notably, throughput slope trend attained a new steady state around 5 hours. The key question was whether the array could revert to the 
initial level of throughput, if it was given enough time to correct the pathological state. During the eight hours of testing, we had no 
evidence suggesting it could. 
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2-DAY TEST CYCLE 
 

To explore how the competitor’s array behaved with a much longer test cycle and whether idle time helps with garbage collection, EMC 
engineers changed the parameters of the test slightly by replacing the existing 12TB with a new 12TB tablespace. The test was conducted 
for 215 iterations (or 53 hours and 45 minutes to be precise) in the following order: 

 

1. Run 300-second 1TB-scale SLOB test at 96 sessions, 25% SQL Update 

2. Sleep 600 seconds 

 

The competitor’s array remained idle for 66% of the entire test due to the ten-minute pause between each invocation workload. 
 

At the end of the test cycle, EMC engineers had 215 AWR reports from which to extract I/O performance characterization data. On analysis 
of this huge data, it was concluded that in spite of altering the test to include 66% idle time, the competitor’s array demonstrated the 
same behavior during the 53 hour 45 minute test as during the 8-hour single test suite (Figure 15). 

 

It appeared that more “rest” was needed for the array to go back to the initial state. It was decided to rest the array for two days before 
performing any further tests. 

 
 

TWO DAYS OF REST FOR THE COMPETITOR’S ARRAY 
 

After the 2-day idle period, EMC engineers aimed to see whether the array had “healed itself.” To that end, the engineers executed a 5-
minute SLOB test with 96 sessions, 25% SQL Update and 1TB active data set. It turns out the 2-day idle period was beneficial since the 5-
minute SLOB test showed performance had returned to pre-pathological levels. In fact, performance returned to a level roughly 6% better 
than the best pre-pathological test results. Figure 16 shows aggregate IOPS graphed on a timeline that includes the first 215 iterations of 
the work/rest testing followed by 2 days of idle time followed by the final, 5-minute test. 

 

 
Figure 16: Garbage Collection Pathology Timeline - Competitor's Array 
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EMC engineers began to question whether the test methodology was simply too aggressive—or too far outside the design center of the 
competitor’s array. After all, most enterprise-grade IT products have both strengths and weaknesses. 

 

EMC engineers had already eliminated test-duration as a possible flaw in the test methodology by extending the testing cycle to several 
days (Figure 16). Further, it was obvious that going directly from a large tablespace initialization operation into an OLTP-style workload 
exposed either a severe design or implementation weakness in the competitor’s array. 

 

 

LARGE ACTIVE DATA SET TESTING 
 

EMC engineers hypothesized that perhaps the 1TB active data set in the previous testing may have resulted in an unfavorable hot-spot on 
the competitor’s array. To investigate this hypothesis, EMC engineers decided to change several test parameters and reengage both the 
competitor’s array and the two X-Brick XtremIO array under the following altered test conditions: 

 

• Large Active Data Set: The SLOB test database was loaded with an 11TB active data set—11X the active data set of the previous 
tests. Loading SLOB data is not a high-bandwidth workload, per se. From an AFA perspective, loading SLOB data is actually a fairly 
low-volume stream of write I/O. In this particular case, it took roughly 16 hours to load (roughly 200 MB/s). This loading time was 
consistent across both the competitor’s array and the XtremIO array. 

 

• SQL Workload Mix: The SLOB SQL Update percent variable was set to 100. Oracle Database cannot process an UPDATE SQL 
statement on a block of data unless it is the SGA buffer pool. Because the active data set was so much larger than the buffer pool, 
the processing sequence was essentially read/modify/write in nature. To put it another way, the block must be read into the SGA 
(the read), the SQL processing updates the block (the modify) and the transaction commit causes a write to the online redo log 
(the write). 

 

• Larger SGA Buffer Pool: The Oracle SGA buffer pool size was increased from 1 gigabyte to 32 gigabytes. The idea in such a 
change is not to improve Oracle SGA hit ratio though. Indeed, considering the size of the active data set of this workload (11TB), 
this buffer pool capacity only has room for .03% of the active data set. Instead, this type of tuning is intended to affect how the 
Oracle Database Writer (DBWR) processes behave. In general, larger SGA buffer pool sizes change the batching-nature of modified 
page flushing. In other words, it’s a different I/O profile—a bit more burst-like in nature. 

 

• Test Duration: The test duration was 24 hours of zero think-time SQL processing with 96 Oracle Database sessions (“users”). 

 

 

AWR LOAD PROFILE ANALYSIS 
 

Once the testing was complete, EMC engineers analyzed AWR and system-level performance data. As always, the most important data for 
analysis comes from AWR. First, the EMC engineers compared the Load Profile data from the AWR reports. Figures 17 and 18 show: 

 

1. Both arrays sustained an Oracle Database workload with 6.04 average block changes per SQL execution. This establishes parity 
between the measured results. 

2. Both results show 96 seconds of DB Time per second. This maps directly to the fact that the SLOB test was executed with 96 zero 
think-time users. 

3. The XtremIO array was able to sustain 76,289 physical IOPS compared to the competitor’s array, which delivered 39% less 46,457 
IOPS. 
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Figure 17: 24-Hour Large Active Data (100% SQL Update) Testing - Competitor's Array 

  
 

 
Figure 18: 24-Hour Large Active Data Testing - XtremIO Dual X-Brick Array 
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AWR WAIT EVENT ANALYSIS 

 

With the AWR Load Profile results in mind, EMC engineers turned their focus to the Wait Event data. After all, with a zero think-time 
workload one expects to be CPU-bound. Since that was not the case, one must account for waits. Figure 19 and 20 show: 

 

1. General Workload Health: Both the XtremIO and competitor arrays exhibited a healthy wait profile. As explained earlier in this 
document the workload consists of a read/modify/write cycle and thus the top wait event of db file sequential read is to be expected. 

2. Key Performance Indicator: 

a. The competitor’s array serviced the critical db file sequential read I/O with 3.49ms average service times (7961122/ 
2.2809*10^9). 

b. The XtremIO array serviced db file sequential read I/O with 1.07ms service times (3981226/ 3.7089*10^9). 

 
 

 
Figure 19: Time Model Events for 24-Hour Large Active Data Testing - Competitor's array 
 

 
Figure 20: Time Model Events for 24-Hour Large Active Data Testing - XtremIO Dual X-Brick Array 
 

After accounting for waits and service times, EMC engineers turned their focus on the SQL Statistics portion of the AWR reports—
specifically the SQL ordered by User I/O Time section. This section of AWR proves a) the same SQL code was executed and b) each 
execution of the SQL statement accesses the same number of rows in the table. Figures 21 and 22 show: 

 

1. Test Parity:  

a. The identical SQL statement ranked number one in I/O-generating SQL in testing of both arrays as per the universally 
unique SQL Id value. 

b. The Per Execution section proves each SQL execution modified 2 rows in the table. 

2. Performance: The XtremIO array sustained 67% more executions of the top I/O-generating SQL than the competitor’s array 
(1,390,465,627 versus 831,656,705). 
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FIGURE 22: LARGE ACTIVE DATA SET TESTING. COMPETITOR’S ARRAY. TOP SQL 

 

 
 
Figure 21: Top SQL Ordered by User I/O Wait Time for Large Active Data Testing – Competitor’s array 
 

 
Figure 22: Top SQL Ordered by User I/O Wait Times for Large Active Data Testing - XtremIO Dual X-Brick array 
 
 
 
I/O HISTOGRAM ANALYSIS—AVERAGES HIDE PATHOLOGY 
 

As pointed out throughout this document, averages are not an acceptable metric for I/O performance in the era of low-latency commercial 

computing. It is important to ensure averages are not obscuring latency outliers. 

AWR reports provide histogram data, however, EMC engineers chose to query the Oracle Database internal performance view 

v$file_histogram directly in order to further characterize the performance differences between the competitor’s array and the XtremIO 

array. Figure 23 clearly illustrates how the competitor’s array averaged roughly 3.5 milliseconds over the billions of I/O serviced during the 

24-hour test. Although the average was 3.5 milliseconds, the histogram clearly shows that nearly 1 in 10 reads serviced by the 

competitor’s array fell between 8 and 16 millisecond latency. This may not be the best way to think about this aspect of performance. It’s 

important to normalize these I/O stalls to wall-clock time. 

 

Figure 23 shows that 26,998,287 read operations suffered latencies between 16 and 32 milliseconds with the competitor’s array. The test 

duration was 86,400 seconds so, on average, the competitor’s array penalized some 313 SQL executions per second with I/O service times 

between 16 and 32 milliseconds. Bear in mind there were only 96 users connected to the database. 
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Figure 23: Random Read Service Time Histogram for Large Active Data Testing - Competitor's Array 
 
Finally, Figure 24 shows that the XtremIO array serviced over 93% of all 3.7 billion read operations in less than 2 milliseconds with the 
vast majority less than 1 millisecond. The distribution of outliers was negligible compared to the competitor’s array. Consider the 16 to 32 
millisecond service time bucket in the XtremIO case. Figure 24 shows XtremIO dipped to that level 95% less frequently than the 
competitor’s array. It’s fair to say the rest of the data represented in Figures 23 and 24 round out the picture quite well. 

 

 
Figure 24: Random Read Service Time Histogram for Large Active Data Testing - XtremIO Dual X-Brick Array 
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SUMMARY 
 
The case studies and analysis offered in this paper conclusively demonstrate that XtremIO’s clean sheet design uniquely exploits the 
characteristics of flash. The time model analysis and performance scaling exercise clearly demonstrates XtremIO’s scalable and sustained 
performance traits for predictable latency and IO throughput.  

 

XtremIO delivered more IOPS, lower latency, and a vastly superior latency histogram through a wide range of conditions from short to 
long duration and small to large data sets as well as varying modify-intensity of the SQL workloads. XtremIO’s scale-out architecture also 
supported linear scaling of performance with the test data showing that XtremIO scales with 96% linearity from a single to a dual X-Brick 
array. Mixed 8 KB IOPS increased from 99,000 with one X-Brick to 190,000—with 1-millisecond service times (or less)—with two X-
Bricks. XtremIO performed better than the competitor’s array in longer duration and large scale SQL UPDATE testing that needs more 
sustained performance when the array gets filled. On the other hand, a competitor’s array exhibited pathological unpredictable results 
due to non-optimized handling of intrinsic NAND attributes such as garbage collection. 

 

It can be concluded that the EMC XtremIO flash arrays are well suited for meeting most demanding performance requirements of Oracle 
Database OLTP workloads. 
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APPENDIX A 
 
Using Oracle Database to test storage for long periods of time produces volumes of rich Time Model data. For example, in the above 
section about scaling users to increase physical I/O demand, EMC engineers conducted 12 hour-long SLOB tests with varying user counts. 
Each SLOB test produces AWR reports. Figure 25 shows the AWR reports created for each user count identified by the numeric suffix of 
each file name. 

 

As Figure 25 shows, the rac_stats.sh script was used to extract the germane data regarding physical I/O for the test period. For example, 
Figure 25 shows the AWR report collected at 192 users sustained an average aggregate IOPS rate of 189,525 consisting of 158,737 read 
IOPS and 30,788 write IOPS. The service times (reads) for the 192-user test averaged 0.96 milliseconds  and the redo payload was 41 
megabytes per second. At the top end of the test cycle we see how the 368 sessions issued an average of 189,020 random 8KB read IOPS 
and 36,886 writes per second—for an entire hour. Further, at 368 users the service times for reads was 1.36ms and the redo payload was 
47MB/s. 

 

 
Figure 25: Extraction of details from large number of AWR reports using scripts 
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Figure 26 shows the source code listing for the simple script used to extract data from the AWR reports.  

 
Figure 26: Script to extract detailed stats from AWR reports 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2014 EMC Corporation. All Rights Reserved. 

 
 
EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice. 

 
The information in this publication is provided “as is.” EMC Corporation warranties of any kind with respect to the information in this 

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. 

 
Use, copying, and distribution of any EMC software described in this publication requires an applicable software license. For the most up-

to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. 

EMC2, EMC, the EMC logo, and the RSA logo are registered trademarks or trademarks of EMC Corporation in the United States and other 

countries. VMware is a registered trademark of VMware, Inc. in the United States and/or other jurisdictions. All other trademarks used 

herein are the property of their respective owners. Published in the USA 

 
 
CONTACT US 
To learn more about how EMC products, services, and solutions can help solve your business and IT challenges, contact your local 

representative or authorized reseller—or visit us at www.EMC.com. 

 

 
 


