

EMC WHITE

IMPLEMENTING A LIGHTWEIGHT
OPENSTACK KILO/CINDER HOST AS
A VIPR CONTROLLER STORAGE
PROVIDER

ABSTRACT

This white paper describes how to build a lightweight VM or physical host as a ViPR
Controller 2.3 third-party storage provider using Red Hat (CentOS) Linux 7.1 via a
Fibre Channel connection. The approach illustrated is intended for evaluation and test
purposes but similar techniques could be used for production deployments.

July, 2015

2

To learn more about how EMC products, services, and solutions can help solve your business and IT challenges, contact your local
representative or authorized reseller, visit www.emc.com, or explore and compare products in the EMC Store

Copyright © 2015 EMC Corporation. All Rights Reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

The information in this publication is provided “as is.” EMC Corporation makes no representations or warranties of any kind with
respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a
particular purpose.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. EMC2, EMC, the EMC logo,
ViPR are registered trademarks or trademarks of EMC Corporation in the United States and other countries.

VMware is a registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions. All other
trademarks used herein are the property of their respective owners.

Part Number H14347

http://www.emc.com/contact-us/contact-us.esp
http://www.emc.com/
https://store.emc.com/?EMCSTORE_CPP

3

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4
WHY OPENSTACK KILO? ... 4

WHY VIPR CONTROLLER? .. 4

AUDIENCE ... 4

HOST REQUIREMENTS .. 5
NOTES .. 5

CREATE THE HOST ENVIRONMENT .. 5
INSTALL A BASIC RED HAT LINUX HOST ... 5

INSTALL AND CONFIGURE KEYSTONE COMPONENTS 6
DEFINE PASSWORDS .. 6

INSTALL DATABASE AND MESSAGE QUEUE SERVICES .. 7

INSTALL AND CONFIGURE AUTHENTICATION SERVICES ... 7

CONFIGURE APACHE AND COMPLETE KEYSTONE SETUP ... 9

INSTALL AND CONFIGURE CINDER COMPONENTS 11
INITIALIZE THE CINDER DATABASE ... 11

INSTALL AND CONFIGURE CINDER ... 11

DEFINE THE BACK-END STORAGE .. 13

BEWARE THE QUOTA LIMIT! .. 16

INTEGRATE CINDER WITH VIPR CONTROLLER 16
CONFIGURE A THIRD-PARTY PROVIDER .. 16

BUILD A VIRTUAL ARRAY .. 19

BUILD A VIRTUAL POOL .. 21

TEST HOST PROVISIONING .. 23

CONCLUSION .. 25

 4

EXECUTIVE SUMMARY
The explosive growth of OpenStack raises a need for flexible and open storage platform management. EMC® ViPR® Controller
abstracts the storage control path from the underlying hardware arrays so that access and management of multi-vendor storage
infrastructures can be centrally executed in software. Using ViPR Controller and OpenStack, users can create “single-pane-of-glass”
management portals from both storage and instance viewpoints, providing the right resource management tool for either group.

This document describes how to build a ViPR Controller storage provider based on the freely available CentOS 7.1 release. Whether
built as a physical host or as a virtual machine, the technique allows ViPR Controller to use almost any third-party storage supported
by the OpenStack Kilo release. The configuration looks like this:

Figure 1. ViPR CONTROLLER STORAGE PROVIDER BASED ON CentOS 7.1

Although this implementation is suitable for demonstration and test purposes, EMC strongly advises a thorough review of the ViPR
Controller and OpenStack documentation and validation to determine suitability before deploying in production.

WHY OPENSTACK KILO?
The OpenStack cloud software stack contains modular components to handle compute (Nova), object storage (Swift), block storage
(Cinder), and networking (Neutron), among others. Cinder provides a consistent, open layer for persistent block storage independent
of any vendor API requirements. Block storage volumes exposed via Cinder fully integrate into the ViPR Controller services allowing
cloud users to manage device creation, snapshot, and other storage functions while hiding vendor-specific implementation and
control details. Kilo is the current release of OpenStack as of this writing.

WHY VIPR CONTROLLER?
ViPR Controller provides separation of control and data planes in storage management, allowing tiering, provisioning, pooling, and
other functions across multiple-vendor physical storage array installations. Through the use of REST APIs, different front-end
consoles (such as OpenStack) can present a unified interface to ViPR Controller control functions, thus consuming storage from ViPR
Controller in a clean, vendor-neutral fashion. In addition, ViPR Controller can act as a front-end to storage presented from
OpenStack, allowing control and use of Cinder volumes created from arrays that ViPR Controller may not natively support.

AUDIENCE
This white paper is intended for system architects, administrators, and implementors who want to use Cinder as a mechanism to
interface third-party storage arrays to their ViPR Controller installation.

5

HOST REQUIREMENTS
o Cinder host: Minimum requirements include an x86_64 processor with at least two cores, at least 8 GB of RAM, at least

8 GB of disk space and at least one NIC. A VM meeting these specifications will work.

o A second hard disk (or available partition space)

o A VMware environment containing a ViPR Controller 2.x instance

o At least one “target” host connected to the array and supported by ViPR Controller. This host will consume the storage

o A local-area network connecting all of the above components

o DNS, NTP, and Internet connectivity to download the components

This document was developed using:

o OpenStack host: Red Hat Linux 7.1 running OpenStack Kilo with IP connections to the target array and switch(es)

o ViPR Controller host: ViPR Controller 2.3.0.0.828 hosted on VMware ESXi 5.5

o Target host: CentOS 7.1 using a QLogic Fibre Channel HBA attached to an IBM SVC (SAN Volume Controller)

NOTES
In this document, commands performed at the shell prompt while logged in as root are prefixed by “#”, and those performed within
the database engine are prefixed by “>”.

If you’re copying-and-pasting from the text, watch for space and dash conversions, and note that lines ending in “ \” are
continuations. You may want to paste your text into an editor, check the conversions and join continuation lines, (eliminating the \
character), then paste it to your command line. Most OpenStack command arguments start with a double dash (“--“).

CREATE THE HOST ENVIRONMENT

INSTALL A BASIC RED HAT LINUX HOST
To build the Cinder host, obtain Red Hat Linux through your normal channels. Boot your host on the image and perform a minimal
OS installation, adding “debugging tools”, “compatibility libraries”, and “development tools” from the Software Selection page.
Automatic disk partitioning is appropriate in most situations; be sure to set up your network and host name, using static IP
addressing rather than DHCP.

When your installation is complete, SSH into the host. Set up NTP time synchronization if a server is available on your network:

yum –y install ntp

Edit /etc/ntp.conf to match your local preferences, removing “nopeer” and “noquery” from the restrict clause. Start up your ntp
daemon and test it out. A normal startup sequence is shown below:

ntpdate <ip-address-of-your-local-NTP-server>
systemctl enable ntpd
systemctl start ntpd
ntpq –c peer

6

Figure 2. SAMPLE OUTPUT FROM NTPD SETUP

If your Cinder host is on a VMware virtual machine, it’s a good idea to install the integration tools:

yum –y install open-vm-tools

Firewalls and SELinux can cause problems with OpenStack. Although it is possible to run with them enabled, during this
demonstration turn off both services for this installation, then edit /etc/selinux/config and set “SELINUX=disabled”.

systemctl stop firewalld
systemctl disable firewalld
setenforce 0

Cinder requires a few aliases to ease configuration, so edit /etc/hosts and delete any lines that may be in the file, then create your
host entry and loopback as follows (note the “controller” and “localhost” entries):

xxx.xxx.xxx.xxx <host> <host.domain> controller localhost
127.0.0.1 loopback

Create a logical volume for Cinder’s use. If you have a second hard drive, then use fdisk to build a partition, and if you’re using a
single drive, then use spare space on the disk to create a partition. Then, use the following commands to create the Cinder volume
(using /dev/sdb1 as our example). The name “cinder-volumes” is significant, so be sure to use it:

pvcreate /dev/sdb1
vgcreate cinder-volumes /dev/sdb1

Install the Kilo and EPEL release repositories, then apply any needed upgrades and reboot the host:

yum –y install http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm
yum -y install https://repos.fedorapeople.org/repos/openstack/openstack-kilo/rdo-release-kilo-
1.noarch.rpm
yum –y upgrade
reboot

INSTALL AND CONFIGURE KEYSTONE COMPONENTS

DEFINE PASSWORDS
Create a table similar to the one below containing the passwords for your installation. Table 1 provides the variable names (matching
those in the OpenStack documentation) and the passwords reflect the demonstration environment:

http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-5.noarch.rpm

7

Table 1 OPENSTACK COMPONENT CREDENTIALS
Variable Name Password Description

<database> dbpass Root password for the database

RABBIT_PASS rbpass RabbitMQ user password

KEYSTONE_PASS kypass Keystone identity administration

ADMIN_PASS adpass OpenStack admin user

CINDER_PASS cdpass Cinder user credential

INSTALL DATABASE AND MESSAGE QUEUE SERVICES
After logging into the freshly-rebooted host as root, install the database and Python extensions:

yum -y install mariadb mariadb-server MySQL-python

Configure the SQL engine by creating /etc/my.cnf.d/mariadb_openstack.cnf containing the following information. Insert your Cinder
node’s IP address in the bind-address line:

[mysqld]:
bind-address = <your-ip-address>
default-storage-engine = innodb
innodb_file_per_table
collation-server = utf8_general_ci
init-connect = 'SET NAMES utf8'
character-set-server = utf8

After starting the database and setting it to start at boot, make the installation secure using the mysql_secure_installation script:

systemctl enable mariadb
systemctl start mariadb
mysql_secure_installation

Press <enter> at the password prompt (as none has been set), enter the database password from Table 1, and take the defaults for
the remaining options by pressing <enter> at each prompt.

Next, install the messaging server. After installation, enable automatic start, start the server, and create the user, then set the
needed permissions. Use the Rabbit password from Table 1:

yum -y install rabbitmq-server
systemctl enable rabbitmq-server
systemctl start rabbitmq-server
rabbitmqctl add_user openstack rbpass
rabbitmqctl set_permissions openstack ".*" ".*" ".*"

INSTALL AND CONFIGURE AUTHENTICATION SERVICES
Now that mariadb is up and running, build the database for the Keystone authentication service. Log into the database (the
parameters are “-u root” for the user, and “-pdbpass” to use dbpass as the password; there’s no space in the latter). When creating
the database and assigning privileges, terminate each command with a semicolon. Use the Keystone password from Table 1:

mysql –u root –pdbpass
> create database keystone;
> grant all privileges on keystone.* to 'keystone'@'localhost' identified by 'kypass';
> grant all privileges on keystone.* to 'keystone'@'%' identified by 'kypass';
> exit;

Figure 3 provides sample output from a successful database creation.

8

Figure 3. MARIADB CONFIGURATION

When the database installation is complete, install the keystone components. We’ll use the Apache HTTP server to handle data
requests and memcached to store tokens (instead of using a SQL database):

yum -y install openstack-keystone httpd mod_wsgi python-openstackclient memcached python-
memcached

Your Keystone service should install in a disabled state. Verify installation using systemctl, then start the memory cache daemon:

systemctl list-unit-files | grep –i keystone
systemctl enable memcached
systemctl start memcached

The sequence should resemble this:

Figure 4. MEMCACHED STARTUP

Generate a random hex digit string to use as an initial token and copy the output to the clipboard. Using that value, set the
environment variables needed in the Keystone configuration procedure:

openssl rand -hex 10
export OS_TOKEN=<your token>
export OS_URL=http://controller:35357/v2.0
env | grep OS_

Here is an example of the token setup operation:

9

Figure 5. TOKEN AND ENVIRONMENT VARIABLES

Open /etc/keystone/keystone.conf in an editor and make the following changes:

o Under [DEFAULT], uncomment “admin_token” and append your random string value.

o Under [database], change “connection = <None>” to “connection = mysql://keystone:kypass@controller/keystone”,
replacing “kypass” with the Keystone password from Table 1.

o Under [memcache], uncomment “servers = localhost:11211”

o Under [revoke], uncomment “driver = keystone.contrib.revoke.backends.sql.Revoke”

o Under [token], uncomment “provider = keystone.token.providers.uuid.Provider”

o Under [token], uncomment “driver = keystone.token.persistence.backends.sql.Token”, changing “sql” to “memcache”

Keystone will populate its database when you run the following command (it produces no output on a normal run):

keystone-manage db_sync

CONFIGURE APACHE AND COMPLETE KEYSTONE SETUP
In order for Apache’s HTTPD service to provide WSGI components to Keystone, the server must be configured. First, edit
/etc/httpd/conf/httpd.conf and search for ServerName. The parameter line looks similar to:

#ServerName www.example.com:80

Replace the line with:

ServerName controller

Next, create /etc/httpd/conf.d/wsgi-keystone.conf and drop in the following text (no customization is necessary):

Listen 5000
Listen 35357
<VirtualHost *:5000>
 WSGIDaemonProcess keystone-public processes=5 threads=1 user=keystone group=keystone display-
name=%{GROUP}
 WSGIProcessGroup keystone-public
 WSGIScriptAlias / /var/www/cgi-bin/keystone/main
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LogLevel info
 ErrorLogFormat "%{cu}t %M"
 ErrorLog /var/log/httpd/keystone-error.log
 CustomLog /var/log/httpd/keystone-access.log combined
</VirtualHost>
<VirtualHost *:35357>
 WSGIDaemonProcess keystone-admin processes=5 threads=1 user=keystone group=keystone display-
name=%{GROUP}
 WSGIProcessGroup keystone-admin
 WSGIScriptAlias / /var/www/cgi-bin/keystone/admin
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LogLevel info

10

 ErrorLogFormat "%{cu}t %M"
 ErrorLog /var/log/httpd/keystone-error.log
 CustomLog /var/log/httpd/keystone-access.log combined
</VirtualHost>

Create a directory structure for the WSGI components, then copy the components from the upstream repository. Finally, adjust
ownership and restart the Apache HTTP server:

mkdir -p /var/www/cgi-bin/keystone
curl http://git.openstack.org/cgit/openstack/keystone/plain/httpd/keystone.py?h=stable/kilo \
 | tee /var/www/cgi-bin/keystone/main /var/www/cgi-bin/keystone/admin
chown -R keystone:keystone /var/www/cgi-bin/keystone
chmod 755 /var/www/cgi-bin/keystone/*
chmod 777 /var/log/keystone/keystone.log
systemctl enable httpd.service
systemctl start httpd.service

Create the admin, cinder, & service users / tenants, and then build the Keystone endpoint. This is easiest from a script file, so create
build_keystone.sh containing the following, substituting your admin password from Table 1. Everything else is literal and stays as-is:

#!/bin/bash
openstack service create --name keystone --description "OpenStack Identity" identity
openstack endpoint create \
--publicurl http://controller:5000/v2.0 \
--internalurl http://controller:5000/v2.0 \
--adminurl http://controller:35357/v2.0 \
--region RegionOne identity
openstack project create --description "Admin Project" admin
openstack user create --password adpass admin
openstack role create admin
openstack role add --project admin --user admin admin
openstack project create --description "Service Project" service

Run the file with the following commands:

chmod +x build_keystone.sh
./build_keystone.sh

The script will output a number of field/value pairs; you should see no traceback or error messages. To verify, unset the environment
variables and do a token issue test (replace the password with the admin password from Table 1):

unset OS_TOKEN
unset OS_URL
openstack --os-tenant-name admin --os-username admin --os-password adpass --os-auth-url
http://controller:35357/v2.0 token issue

Successful output resembles the figure below (your return values will be different):

Figure 6. TESTING THE KEYSTONE INSTALLATION

Complete the Keystone setup by editing ~/.bash_profile and appending the following to the file. Replace the OS_PASSWORD value
with the one from Table 1:

export OS_PROJECT_DOMAIN_ID=default
export OS_USER_DOMAIN_ID=default

11

export OS_PROJECT_NAME=admin
export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=adpass
export OS_AUTH_URL=http://controller:35357/v3
export OS_VOLUME_API_VERSION=2

Run the following command to install those variables in your environment:

source ~/.bash_profile

INSTALL AND CONFIGURE CINDER COMPONENTS

INITIALIZE THE CINDER DATABASE
Like Keystone, Cinder requires entries in the OpenStack database. You create those entries the same way as you did for Keystone
but with slightly different parameters. Refer to Table 1 for the passwords:

mysql –u root –pdbpass
> create database cinder;
> grant all privileges on cinder.* to 'cinder'@'localhost' identified by 'cdpass';
> grant all privileges on cinder.* to 'cinder'@'%' identified by 'cdpass';
> exit;

The output should be similar to that in Figure 3. To populate the database, create build_cinder.sh containing the following,
substituting your cinder password from Table 1. Everything else is literal and stays as-is:

#!/bin/bash
openstack user create --password cdpass cinder
openstack role add --project service --user cinder admin
openstack service create --name cinder --description "OpenStack Block Storage" volume
openstack service create --name cinderv2 --description "Openstack Block Storage V2" volumev2
openstack endpoint create \
--publicurl http://controller:8776/v1/%\(tenant_id\)s \
--internalurl http://controller:8776/v1/%\(tenant_id\)s \
--adminurl http://controller:8776/v1/%\(tenant_id\)s \
--region RegionOne volume
openstack endpoint create \
--publicurl http://controller:8776/v2/%\(tenant_id\)s \
--internalurl http://controller:8776/v2/%\(tenant_id\)s \
--adminurl http://controller:8776/v2/%\(tenant_id\)s \
--region RegionOne volumev2

Run the file with the following commands:

chmod +x build_cinder.sh
./build_cinder.sh

You should see a list of field/value pairs with no traceback or error messages – if you do receive any, correct any typing or syntax in
your script file, delete any lines that have already run, and retry the script.

INSTALL AND CONFIGURE CINDER
Once that’s successfully completed, your next task is to install the Cinder packages, then create a base configuration file:

yum -y install openstack-cinder python-cinderclient python-oslo-db
mv /etc/cinder/cinder.conf /etc/cinder/cinder.original
cp /usr/share/cinder/cinder-dist.conf /etc/cinder/cinder.conf

The base file (/etc/cinder/cinder.conf) needs more information about how Cinder is configured. Open the file in an editor and make
the following changes:

o Under [DEFAULT], add a new entry “rpc_backend = rabbit”.

12

o Under [DEFAULT], add a new entry “my_ip = xxx.xxx.xxx.xxx”, using your host’s IP address.

o Under [database], in the “connection” line, change the cinder password (it’s between the ‘:’ and ‘@’) to the one in Table
1. The default is “mysql://cinder:cinder@localhost/cinder”, so the password to change is the second “cinder”.

o Delete everything under [keystone_authtoken] and replace with the text below. Be sure to change the password and
user fields to match the credentials in Table 1, and insert your Cinder host’s IP address in the first two lines:

[keystone_authtoken]
auth_uri = http://your-ip-address:5000/v2.0
auth_url = http://your-ip-address:35357
auth_plugin = password
project_domain_id = default
user_domain_id = default
project_name = service
username = cinder
password = cdpass
admin_tenant_name = service
admin_password = cdpass
admin_user = cinder

[oslo_messaging_rabbit]
rabbit_host=controller
rabbit_userid=openstack
rabbit_password=rbpass

[oslo_concurrency]
lock_path = /var/lock/cinder

Since you copied the template for cinder.conf, the permissions probably aren’t correct. Fix them by running:

chmod 755 /etc/cinder/cinder.conf

Cinder also wants a lock directory. Create one and set permissions:

mkdir /var/lock/cinder
chmod 777 /var/lock/cinder

Also, add the following lines to /etc/rc.local (as the directory will disappear at reboot):

mkdir /var/lock/cinder
chmod 777 /var/lock/cinder

When done, set /etc/rc.local to executable:

chmod +x /etc/rc.local

Populate the database with cinder-manage (note the syntax is different than keystone-manage). You may see an error message
regarding oslo_config, but the operation will succeed – this is a known issue scheduled for a fix in a later Cinder release). After that
completes, enable and start Cinder, then test:

cinder-manage db sync
systemctl enable openstack-cinder-api openstack-cinder-scheduler openstack-cinder-volume
systemctl start openstack-cinder-api openstack-cinder-scheduler openstack-cinder-volume
cinder service-list

The error message, and subsequent successful output of the command sequence, looks like this:

13

Figure 7. CINDER INITIALIZATION

DEFINE THE BACK-END STORAGE
Although the basic Cinder configuration is now complete, Cinder doesn’t know anything about the storage it’s going to manage. To
define the back-end storage, you add a section to /etc/cinder.conf which calls out the specific parameters that enable the vendor-
specific driver to talk to the array. This document uses an IBM SVC array, and the OpenStack web site
(http://docs.openstack.org/kilo/config-reference/content/section_volume-drivers.html) calls out the parameters for the IBM SVC.

In the [DEFAULTS] section of the file, add the following:

enabled_backends = ibm-svc-fc

This line tells Cinder what backends to use (you could have multiple backends if you have multiple types of arrays or multiple options
for a given array type, for example). You use the same string to identify the driver. Next, append the text below to the end of
cinder.conf, filling in the variables as noted:

[ibm-svc-fc]
volume_driver=cinder.volume.drivers.ibm.storwize_svc.StorwizeSVCDriver
san_ip=<the array’s IP address>
san_login=<the array’s administrative login>
san_password=<the array’s administrative password>
storwize_svc_volpool_name=ViPR_C_pool
volume_backend_name=IBMSVC-FC
storwize_svc_connection_protocol=FC

These driver parameters are typical of third-party storage, but each vendor defines their own set, so be sure to check the
documentation. In this example, here’s what they do:

[ibm-svc-fc]

A name for Cinder to refer to the driver backend definition. You can use whatever text you want (keep it short and limited to
alphanumeric and punctuation characters), but it must be unique per instance. The value here must be the same as the
enabled_backends entry from above.

volume_driver=cinder.volume.drivers.ibm.storwize_svc.StorwizeSVCDriver

Provides the location of the Python driver code (/usr/lib/python2.7/site-packages/cinder/volume/drivers/ibm/storwize_svc).

san_ip=<the array’s IP address>
san_login=<the array’s administrative login>
san_password=<the array’s administrative password>

Enables Cinder to log into the array and perform its functions. You can configure passwordless SSH via key-pair authentication, but
this example uses a simple password challenge.

http://docs.openstack.org/kilo/config-reference/content/section_volume-drivers.html

14

storwize_svc_volpool_name=ViPR_C_pool

The pool on the IBM SVC itself from which Cinder will carve its volumes. This pool must exist prior to Cinder ingestion (the
administrator builds it outside of Cinder) and represents the total storage space available to Cinder.

volume_backend_name=IBMSVC-FC

Cinder’s reference to the volume backend; you use it when assigning a specific type to Cinder. This allows flexibility in multiple-
driver configuration; for example, you could assign the same backend to service multiple driver instances. By default, ViPR Controller
assumes that the host connection is via IP, so if you are using Fibre Channel, the backend or the Cinder driver name must contain
the string “FC” so that ViPR Controller knows this array is Fibre Channel connected.

storwize_svc_connection_protocol=FC

Configures the connection to the array from the Cinder driver itself.

Now that Cinder has the information needed to define the array, create the array in the Cinder database with the following
commands. Note that the type name can be whatever the administrator wants, but the volume backend name must exactly match
the string in the cinder.conf file. The type-key set command produces no output, so use the extra-specs-list command to verify the
mapping:

cinder type-create ibm-svc
cinder type-key ibm-svc set volume_backend_name=IBMSVC-FC
cinder extra-specs-list

Successful completion resembles the following (your GUID values will vary):

Figure 8. ASSOCIATING A DRIVER WITH A DATABASE ENTRY

Restart the Cinder services:

systemctl restart openstack-cinder-api openstack-cinder-scheduler openstack-cinder-volume

At this point, it’s important to understand that the Cinder host has no storage connections to the array – and needs none. All of the
communications are via IP to the control interfaces. In fact, our IBM SVC has Fibre-Channel connections, and the Cinder host we are
using has no FC cards installed.

However, it’s critical to completely verify Cinder operations before you attempt to integrate Cinder with ViPR Controller. If Cinder
isn’t working properly, then you need to straighten out any problems; ViPR Controller won’t be able to cure Cinder issues. So even
though there’s no storage connection from the Cinder host to the array, we can still create and delete volumes via the control
interface.

To create a volume, use the “cinder create” command. The volume_type parameter matches your type-create entry, and the
display_name is just for identification purposes. The final digit is the size of the volume in GB:

cinder create --volume_type=ibm-svc --display_name=test 2

Use the cinder list command to verify creation; an “available” status indicates success. Output should resemble the following:

15

Figure 9. CREATING A TEST VOLUME

Here’s the volume displayed using the IBM SVC console. Note that the pool matches the definition in /etc/cinder.conf and that there
are no host mappings.

Figure 10. VOLUME DISPLAY AT THE ARRAY

If you want to clean up the environment prior to ViPR Controller integration, use the “cinder delete” command with the GUID from
“cinder list”:

cinder delete be1fb37c-2ab3-4df2-bead-a60d80124502

16

Figure 11. DELETING THE TEST VOLUME

BEWARE THE QUOTA LIMIT!
There’s some great installation and troubleshooting information at https://community.emc.com/docs/DOC-37248. One of the tips
highlights a problem you might hit after setting up Cinder. You’ll probably want to go ahead and start creating volumes but after you
build a few, you’re likely to hit a problem as shown in Figure 12:

Figure 12. OVER THE QUOTA LIMIT

If you do run into this limitation, check the information at the above link (and on the OpenStack web site) about resetting quotas.
You’ll need to use “openstack user list” to get the GUID of your admin user, then “cinder quota show” command to display the
current settings.

INTEGRATE CINDER WITH VIPR CONTROLLER
Before you can use ViPR Controller to provision storage to your hosts, you need to set up a few things so that the entities can
communicate. This paper assumes you’ve already done the following:

o Installed and licensed ViPR Controller

o Discovered a Fabric Manager and at least one network

o Verified that your target host and array Fibre Channel ports were discovered in or added to the network(s)

o Verified link connectivity between your host and switch(es)

CONFIGURE A THIRD-PARTY PROVIDER
In ViPR Controller, under Tenant Settings | Projects, create a project (“Project 1”) and then open Physical Assets | Storage Providers.
Add the Cinder host using “Third-party block” as the type.

Figure 13. ADDING THE STORAGE PROVIDER

https://community.emc.com/docs/DOC-37248

17

Once that’s added, you should see the target array added. But if you look under “Ports”, something interesting appears:

Figure 14. WHAT’S THIS DEFAULT PORT?

Note here that the port type is “FC”. If you see “IP” here, that probably means you need to restart the Cinder services (or you didn’t
put “FC” in the back-end name), so ViPR Controller doesn’t realize the port is in fact Fibre Channel.

The OpenStack API doesn’t provide the storage WWPN in a Fibre Channel connected setup, and so ViPR Controller isn’t going to be
able to perform any export operations. In order to get the WWPN in there, you need to log into the ViPR Controller console and run a
few commands, but first, you need a valid WWPN from the array. You can get that from the ViPR Controller network screen or from
the array itself. The IBM SVC console provides the information in the Monitoring | System Details screen:

18

Figure 15. PORT DISPLAY AT THE IBM SVC CONSOLE

Select one of the PWWNs that you know is attached to your network, then SSH into the ViPR Controller host console and run the
following:

cd /opt/storageos/cli/bin
./viprcli authenticate –hostname <your-ViPR-host-IP> -u root –d /tmp
./viprcli -hostname <your-ViPR-host-IP> storagesystem list

This command shows the attached storage systems. You’re interested in the last three digits of the serial number for the array you
want to connect (in the example screenshot below, it’s “317”, so we’ll use that here).

./viprcli -hostname <your-ViPR-host-IP> storageport list -t openstack -sn 317

Feed those three digits into the storageport command (-t is the type, here “openstack” and –sn is the serial number). The output
shows you the port network ID, which is the same as the identifier in the ViPR Controller display. That’s the value you’re trying to
change – note the “DEFAULT” here.

./viprcli -hostname <your-ViPR-host-IP> storageport update -t openstack -sn 317 -tt FC -pn
DEFAULT -pnwid "your-PWWN”

Update the storage port with the new data (-tt is transport type, here FC for Fibre Channel, -pn is the entry you’re updating, here
known as “DEFAULT”, and the new WWN).

./viprcli -hostname <your-ViPR-host-IP> storageport list -t openstack -sn 317

Running the storageport command again reveals that the valid WWPN you provided is now listed under PORT_NETWORK_ID.

The example output below shows the relationship among these commands:

19

Figure 16. VIPRCLI COMMANDS TO ADD THE WWPN

 The ViPR Controller console also shows the new WWPN:

Figure 17. THERE’S THE WWPN!

You should also see the storage pool(s) from your array:

Figure 18. AND STORAGE, TOO…

Wait a second. Where did that 1024 GB figure come from? As no storage has been allocated from this pool, ViPR Controller doesn’t
have any valid information from Cinder as to what’s available. That’s a normal display.

Now that ViPR Controller knows about your array and host, you can build your virtual array and virtual block storage pool.

BUILD A VIRTUAL ARRAY
Best practice is to create a separate virtual array for Cinder use. Although it is possible to combine Cinder into a virtual array with
other storage, odd results may occur.

In ViPR Controller, under Virtual Assets | Virtual Arrays, create a new virtual array to serve out the third-party storage. Select “Add
Storage System” and check the IBM SVC driver from your array (if multipath is to be used, make sure all of your storage ports show
up correctly; our example only uses one port at the IBM SVC array, which is definitely not recommended in a production
environment):

20

Figure 19. ADDING THE STORAGE SYSTEM

You should see the port(s) and pool(s) associated with your array:

Figure 20. VERIFY THE PORT AND POOL COUNTS

Next, under Physical Assets | Networks, open your Fibre Channel network (the target host and array should already be there), check
the box for your virtual array, and save the changes:

21

Figure 21. ADD THE VIRTUAL ARRAY TO THE NETWORK

BUILD A VIRTUAL POOL
The final configuration step from the ViPR Controller side is to build a virtual pool from your Cinder-backed storage. Wait a few
minutes for ViPR Controller to rescan, and then create a block virtual pool using the new array. If you plan to use snapshots, then
make sure you configure the snapshot settings in the pool. Critical settings include making it a thin pool and setting multipath
correctly; if you have more than one port, then the virtual array should have been configured with all of the available ports. In this
example we use 1 minimum, 1 maximum, and 1 path per initiator as shown in Figure 21. Otherwise, ViPR Controller may expect
multiple paths, and as a result won’t consider your array as a viable candidate for this pool:

22

Figure 22. VIRTUAL POOL SETTINGS FOR CINDER USE

Your virtual pool appears as shown below:

23

Figure 23. VERIFYING THE VIRTUAL POOL

TEST HOST PROVISIONING
Now that the ViPR Controller configuration is complete, it’s time to actually provision some storage to a host. In the Service Catalog,
select Block Storage Services | Create Block volume for a Host, then fill in the details.

Figure 24. TESTING THE INTEGRATION SETUP

24

Successful completion of the order looks like this:

Figure 25. SUCCESSFUL PROVISIONING

After rescanning the host’s HBAs (echo “- - -“ > /sys/class/scsi_host/hostN/scan) the host sees the storage as well:

25

Figure 26. STORAGE FROM THE HOST PERSPECTIVE

Note that there’s two paths to the array according to multipath, but there was only one configured in ViPR Controller. Why? In our
setup, both HBAs are zoned to the same back-end IBM SVC port; this provides redundancy between the host and the local switch,
but doesn’t protect against a failure at the array port. ViPR Controller only knows about one array port and thus configured its view
of the array for only a single path. In a production instance you would want to use at least two ports from the array and make sure
that your virtual array sees all of the available paths, then set your virtual pool to use them.

CONCLUSION
This document has demonstrated how to build a single-host Cinder platform for ViPR Controller using Red Hat Linux Whether
implemented on a virtual or physical host, the technique enables ViPR Controller to use OpenStack’s Cinder modules in provisioning
from arrays that ViPR Controller may not natively support.

The author would like to express appreciation to the OpenStack / Cinder development and documentation team, as some of the
information contained herein originated in their work. Also, internal reviewers on the ViPR Controller field, development, and
engineering teams provided invaluable feedback.

Again, EMC strongly recommends a thorough review of the ViPR Controller and OpenStack documentation and appropriate validation
to determine suitability before deploying in any production environment.

	1TEXECUTIVE SUMMARY1T 4
	1THOST REQUIREMENTS1T 5
	1TCREATE THE HOST ENVIRONMENT1T 5
	1TINSTALL AND CONFIGURE KEYSTONE COMPONENTS1T 6
	1TINSTALL AND CONFIGURE CINDER COMPONENTS1T 11
	1TINTEGRATE CINDER WITH VIPR CONTROLLER1T 16
	1TTEST HOST PROVISIONING1T 23
	1TCONCLUSION1T 25

