AI and Machine Learning: The Present and the Future

Evolving technologies like AI and ML are helping transform smart manufacturing, healthcare and digital cities.

We have heard the adage “data is the new oil. Data has become one of the most critical assets to enterprises globally. Digitalization of organizations has opened up a new horizon in customer outreach, customer services and customer interactions. Every interaction with a customer is now a data footprint – with massive potential to be harnessed when viewed and analyzed in totality.  

The collection and processing of data is facilitated by new technologies such as 5G mobile networks and edge computing (In an a previous blog I spoke about how edge is ushering in a business transformation – read here). The time then is ripe for enterprises to tap into the transformative effects of artificial intelligence (AI) and machine learning (ML).  

Early forays into AI were inhibited by a lack of computing and processing power, but today that barrier has largely been lifted due to progress in both IT infrastructure and software spaces. Artificial intelligence has also evolved greatly as myriad industries recognize its ability to help businesses stay relevant, improve operations, gain competitive advantage and pursue new business directions. The AI space is growing exponentially. Gartner has predicted that the business value of AI will reach $5.1 billion by 2025. 

Smarter manufacturing 

For the digitally connected consumer, examples of AI are commonplace. Commonly used applications with AI at their core include Apple’s Siri, Amazon’s Alexa and navigation applications such as Waze and Google Maps that recommend best routes to take based on current traffic conditions.  

What’s perhaps lesser known is how AI and ML have been applied to great transformative effect in a variety of use-cases today. With the vast number of data endpoints today, the convergence of AI and the internet of things (IoT), which is about sensors installed in machines that stream information to be processed and analyzed, has been greatly beneficial to industries.  

AI plays an instrumental role in the manufacturing industry, assisting in matters ranging from demand forecasting to quality assurance to predictive maintenance and, of course, cost savings. A McKinsey report revealed 64% of respondents in the manufacturing sector who adopted some form of AI enjoyed cost savings of at least 10%, with 37% of respondents reporting cost savings of more than 20%. 

A large global food manufacturer used machine learning to improve planning coordination across its marketing, sales, account management and supply chain, which resulted in a 20% reduction in forecast errors, a 30% reduction in lost sales, a 30% reduction in product obsolescence and a 50% reduction in demand planners’ workload.  

A premier automobile manufacturer, meanwhile, used automated image recognition, which uses AI to evaluate component images during production and compares them in milliseconds to hundreds of other images of the same sequence to determine deviations from the standard in real-time. The AI application also checks whether all required parts have been mounted and if they have been mounted in the right place. Its also deployed in other parts of the manufacturing process, such as dust particle analysis at its paint shop, where vehicle surfaces are painted and dust particle content on the surfaces needs to be eradicated. There, AI algorithms compare real-time data from dust particle sensors in the path booths and dryers with a comprehensive database that was developed for dust particle analysis. The result – highly sensitive manufacturing systems benefited from even greater precision during the production process. 

Healthcare and digital cities 

Over in Japan, Konica Minolta, an imaging technology firm, embedded AI and ML into its Dynamic Digital Radiography (DDR) healthcare solution. Backed by IT infrastructure from Dell Technologies capable of processing up to 300 images in a single scan and animating those images in mere minutes, DDR enabled medical practitioners to make better predictions concerning lung ventilation and perfusion (oxygen and blood flow) in X rays, so a patient’s treatment plan could be more easily determined.  

Governments’ focus on smart cities too, has given AI an opportunity to shine in many ways. From a citizen security standpoint, AI-backed security camera footage can be analyzed in real time to detect criminal behavior so it can be instantly reported and dealt with. Automatic number-plate recognition (ANPR), a technology that uses optical character recognition on images to read vehicle registration plates from camera footage, can be used to great effect for traffic management and to predict traffic for planning purposes. AI is also used to assist with predictive maintenance for public infrastructure, pollution control and waste management (where AI powered robots can sort through rubbish and clean lakes and rivers). 

AI for the future 

The future for artificial intelligence and machine learning will be unbelievably exciting. The potential is immense, and we have just scratched the tip of the iceberg. As Gartner puts it, there are four trends driving the AI industry – responsible AI, small and wide data, operationalization of AI platforms and efficient use of resources.  

As we have seen with some of the customers quoted above, Dell Technologies continues to invest and work in this space, collaborating with our customers and our partners to fully harness the power of these evolving technologies. In times to come, we will see more analytics driven transformative business outcomes. Fasten your seat belts – this is taking off. 

 

About the Author: Peter Marrs

Peter Marrs serves as President of Dell Technologies for Asia Pacific, Japan & Greater China (APJC). This is a region that spans over 40 markets, including Australia & New Zealand, Greater China, India, Japan, Korea, Singapore and countries in Southeast Asia. Peter is responsible for the region’s business, strategy, and growth across Dell’s extensive technology portfolio, services and solutions. Committed to talent development, Peter is leading the team to help customers succeed on their digital transformation journeys. An industry veteran, Peter has more than 30 years of experience in IT. He has held global and regional senior management roles across enterprise and client businesses. Peter joined Dell in 2000 in enterprise product development and spent over a decade in leadership roles in APJ. He was most recently the President for APJ Region and now has an expanded mandate to lead One Greater China. His previous roles include Vice President of APJ Enterprise Solutions, Vice President of APJ Client Solutions Group, Vice President of APJ Solutions Sales, President & General Manager of Dell Korea, Executive Director of Solutions Sales for ASEAN and Executive Director, Marketing, Dell China. Peter has also worked at Dell’s corporate headquarters in the US as the Senior Vice President of North America Compute & Networking Sales. Peter started his career in AT&T. Prior to joining Dell, he held leadership roles in sales and marketing at Xerox in New York. Peter earned his Master of Business Administration from Syracuse University and has a Bachelor of Science in Business from Lemoyne College. Based in Singapore, Peter is married with twins. An avid runner, Peter also loves traveling the world to learn about different cultures, and he enjoys collecting vinyl records.